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Abstract Sn4+-doped V2O5 cathode materials were pre-
pared by a sol–gel method. The results showed that the
modified cathode material was a mixture of V4+ and V5+. It
was a kind of typical mesopore material with pores of
2–4 nm diameter. Symmetrical curves were obtained by
cyclic voltammetry (CV) tests performed at different
scanning rates and voltage ranges. In particular, the CV
curve showed more obvious rectangle property and better
redox properties when the scanning rate was 5 mV s−1. At
the current density of 200 mA g−1, the maximum specific
energy, specific power, and coulomb efficiency of the
material were 27.25 mA hg−1, 494.87 Wkg−1, and 97%,
respectively. It was indicated that small amounts of Sn4+

doping would improve the surface morphology and
electronic conductivity of V2O5. The Sn4+-doped V2O5

showed good capacitance characteristics.
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Introduction

Fuel cells and secondary batteries have been used as
dynamic power sources of electric vehicles due to their
high specific energy. When electric vehicles start and
climb, dynamic powers must possess high power density
in order to afford the instantaneous high current [1–3].
Therefore, supercapacitors, a new power source, have
attracted many scientists' great interests. Hybrid power
supplies, composed of high-energy-density fuel cells or
secondary batteries and supercapacitors with high power
density, are a present trend.

The principle of the double-layer capacitor is that partial
ions in the solution were absorbed by carbon electrodes
with high specific areas; then, the ions gathered at the
solution side of the electrode/electrolyte interface and
arranged a certain distance from the electrode, which
formed an interfacial film. The charges on the film were
equal to those on the electrode surface but had reverse
electric properties [4]. This kind of double-layer capacitor
has been applied in semiconductor auxiliary power devices,
although their specific energy and specific power are
relatively low. Through modification, the specific energy
of 140 Fg−1 can be achieved when the specific surface of
carbon aerogel is 2,000 m2g−1 [5]. The research of redox
electrochemical capacitors is focused on transition metal
oxides of Mn, Ni, and V [6–11]. Both Passerini and Parent
proposed the use of vanadium oxide aerogels derived from
sol–gel precursors by supercritical drying [12, 13]. These
V2O5 aerogels can act as high-rate and high-capacity hosts
for lithium and shorten the distances of penetration and
diffusion, which gave the capacitors high power and
densities of energy.

The porous nano-sized V2O5 prepared by a sol–gel
method and amorphous V2O5 prepared by quenching at

H. Wang (*) : J.-x. Li
School of Materials Science and Engineering,
Tianjin Polytechnic University,
Tianjin 300160, China
e-mail: waho7808@163.com

Z.-y. Tang
School of Chemical Engineering and Technology,
Tianjin University,
Tianjin 300072, China

J Solid State Electrochem (2010) 14:1525–1531
DOI 10.1007/s10008-009-0964-5



950°C were researched in the literature [14, 15]. V2O5

doped with Sn was synthesized by the sol–gel method.
After being dried, the 3D reticulated nano-nets were formed
due to the collapse of the structure, which could afford the
paths for the insertion and emersion of ions in the electrolyte.
The energy and power performance of V2O5 were improved
by doping with SnO2 because SnO2 enhanced the catalysis
performance of V2O5 and enlarged the amount of inserted
electrolyte. Jayalakshmi studied the performance of V2O5

synchronously doped with SnO2 and CNT [16].
In this paper, the capacitance performance of V2O5

doped with Sn4+ was intensively studied with a series of
experiments.

Experimental

Preparation of V2O5 with Sn4+ doping

V2O5 (1 g) and SnO2 (0.0828, 0.124, 0.1656, and 0.207 g,
respectively) were mixed and ground fully in agate mortar
and then transferred to a flask (material agate ball ratio of
about 10:1; milling time 2 h; speed 300 rpm; a one-way
rotary). Then, 30% H2O2 (100 ml) was adding into the
homogenous mixture slowly with stirring, and then acetone
(30 ml) was added into the mixture. After stewing for 12 h
at room temperature, the mixture turned to red brown gel.
The gel was dried for 12 h at 80°C in an oven. Finally, the
cathode material with Sn4+ doping was obtained by ball
milling in an agate pot.

The chemical reactions were as follows:

V2O5þ2H2O2 ! 2HVO4þH2O ð1Þ

2HVO4þ n� 1ð ÞH2O ! V2O5 � nH2OþO2 ð2Þ

Preparation of electrodes and assembly of capacitors

The Sn4+-doped V2O5 materials were mixed in a blender
with acetylene black and polytetrafluoroethylene, with a
weight ratio of 85:5:10, and dissolved in ethanol. Then, the
three components and ethanol were mixed in a blender. The
paste-like mixture was spread uniformly on porous nickel
current collectors. After being dried at 120°C for 12 h and
pressed at a pressure of 4 MPa, a mixture with 0.2 mm
thickness was formed.

The cells were assembled in a glove box (dried air,
moisture content <3 ppm). The FV3 sulfonating membrane
was used as a separator, and the electrolyte used was
MeEt3NBF4(PC).

Electrochemical test of Sn4+-doped V2O5

electrode materials

The asymmetry supercapacitors were characterized at
room temperature by cyclic voltammetry, electrochemical
impedance spectroscopy, and galvanostatic charge/discharge
tests. Galvanostatic charge/discharge behavior was per-
formed under the conditions of constant current density
of 500 mA g−1 in a voltage range of 2.0–0 V with a
PCBT-100 equipment. Cyclic voltammetry (CV) and
electrochemical impedance spectroscopy (EIS) tests were
performed using electrochemical workstation (Gamry
Instrument model PCI4-750). EIS was tested at an
amplitude of 5 mV in the frequency range of 3×105–
0.01 Hz. CV was tested in the voltage range of −2–1 V.
Sn4+-doped V2O5 was the working electrode material, and
graphite was both counter electrode and reference electrode
material (Table 1).

Characterization of Sn4+-doped V2O5 electrode
materials

The structure and composite of the products were measured
by the X-ray diffractometer (Netherlands PANalytical X'
Pert Highscore Co Kα 40 KV, 8°/min, scan range of 5° to
90°). The surface morphology was investigated with the
XL30 environmental scanning electron microscope (ESEM;
PHLIPS). The samples were attached to an ESEM tube and
then sputtered with a layer of Au. The SEM magnification
was ×5,000.

Results and discussion

Scanning electron microscopy characterization
of Sn4+-doped V2O5 electrode materials

Figure 1 displays the ESEM images of V2O5 and V2O5

doped with Sn. Figure 1a, b shows that the basic V2O5 and
ball-milled V2O5 are submicron-sized and their morpholo-
gies are irregular. The particles stacked up in different ways
to form submicron-sized particles. From Fig. 1c, it can be
seen that the particle sizes of V2O5 doped with Sn are
obviously smaller than those of V2O5 in Fig. 1a, and the
doped particles' sizes are distributed evenly. However, the
surfaces of the particles are rough because the particles
agglomerate seriously. The results show that Sn4+ doping
could alter the microstructure and the morphology of
V2O5. Rough surfaces of particles increase specific energy
and reduce electrode resistance. Furthermore, the contact
areas between electrode material and electrolyte are
increased due to the rough surfaces, which is beneficial
to achieve the electrochemical active sites, the well
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infiltration of the electrolyte, and the improvement of the
specific energy.

X-ray diffractometer analysis

Figure 2 shows the X-ray diffractometer (XRD) pattern of
synthesized V2O5 and V2O5 doped with Sn. Figure 2a
shows the XRD spectrum (JCPDF card 00-41-1426) of
basic V2O5 and ball-milled V2O5 electrode materials,
and Fig. 2c shows the diffraction peak at about 8.14°,
which was the characterized peak of V6O13 (JCPDF card
27-1318), and the peaks at 30.9° and 59.1° belonged to
V2O5 (JCPDF card 52-0794). The peaks at 39.6° and 61.1°
were attributed to SnO2 with increased contents of SnO2.
As strength of the peak increases, the peak width at half
height reduces, and the crystallinity and the particle size are
augmented. The lattice constants were a=1.43668 nm,
b=1.43783 nm, and c=1.43812 nm, respectively, with a
molar ratio of Sn/V2O5=0.2. After Sn was doped, the
lattice of V2O5 was distorted, and the electrolyte could
penetrate into V2O5 more easily, which enhanced the
specific energy of the electrode materials.

Study of liquid nitrogen absorption–desorption

Figure 3 shows absorption and desorption isotherms of
liquid nitrogen. The absorption isotherm is a typical IV
style according to the IUPAC classification. It contains
notable hysteresis loops, which indicates that the samples
are typical mesopore materials. The absorption and
desorption hysteresis loops are H2 style, which indicates
that the materials have relatively wide aperture and
various hole styles. The specific area of the V2O5

xerogel was 121 m2g−1 by Brunauer–Emmett–Teller
(BET) test. The total pore volume was 0.2015 cm3g−1,
and the average aperture was 6.6581 nm. The results of
the pore distribution calculated by the Barrett–Joyner–
Halenda method are shown in Fig. 3a. Most holes are in
the range of 2 to 4 nm, and there are also some minipores
and macropores.

Specific energy test

Figure 4 shows the relationship between the specific energy
and Sn-doping contents. The parabola shape in Fig. 4
illustrates that the specific energy of V2O5 xerogel
increased at first and then reduced slightly with the
increasing contents of Sn. When Sn/V2O5=0.2 (mol ratio),

Table 1 Full width at half maximum (FWHM) and d of electrode
material Sn/V2O5

hkl Oxide Sn/V2O5=0.1 Sn/V2O5=0.2

d (V2O5)/(A) FWHM/
(°2Th)

d (V2O5)/(A) FWHM/
(°2Th)

001 V6O13 13.2635 0.890 12.6009 0.679

104 V2O5 3.4425 0.521 3.4731 0.472

152 SnO2 3.3466 0.479 3.3374 0.336

008 V2O5 1.8126 0.617 1.8102 0.172

811 SnO2 1.7653 0.595 1.7626 0.179

(a)

(b)

(c)

Fig. 1 SEM photograph of a basic V2O5, b ball-milled V2O5, and
c Sn-doped V2O5
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the highest specific energy of 27.25 mA hg−1 and the
highest power of 494.87 Wkg−1 were obtained. One
possible reason is that V4+ and V5+ are present in the
product V6O13 [16–19]. The other one is that some Sn4+

goes into the crystal lattice of V2O5 to replace V5+, which
leads to more lattice cavities and more energy storage.
Additionally, it is helpful to increase the utilization ratio of
V2O5. In general, energy storage of Sn/V2O5 materials is
mainly produced by electrochemical reactions on surface.
With the increase of Sn-doping contents, the lattice cavities
and the quantity of V2O5 engaging reaction would increase.
Accordingly, the V2O5 contents are reduced, which leads to
the specific energy being reduced slightly. The result is in
accordance with the conclusion of XRD analysis.

Electrochemical impedance spectroscopy

Figures 5 and 6 show impedances of the electrode process.
Results indicate that total impedances contains four parts:
(a) solution resistance R1, which is located in the
intersection of the hemicycle in high-frequency regions
and the real axis in EIS; (b) electrochemical reaction
resistance R2, namely, the diameter of the hemicycle; (c)
impedance hemicycle from 102 to 103Hz is caused by the
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adsorption capacitance C1 and the adsorption resistance R3;
and (d) diffusion capacitance Q2 and diffusion resistance
R4, which is an upward line under the frequencies of 101Hz.
The V2O5 xerogel electrode is a porous electrode with
various hole styles. From Fig. 5, besides electrochemical
reactions, it also includes electrochemical absorption (C1 and
R3), desorption, and proton diffusion processes (Q2 and R4).
So it is a very complex electrode process that differs from the
ideal capacitor process.

Figure 7 shows the relationship between the impedance
spectroscopies of V2O5 simulation capacitor and Sn-doped
V2O5. Nyquist plot contains a hemicycle in the high-
frequency regions and a line in the relatively lower-
frequency regions, namely, Warburg resistance, generated
by ion diffusion. All the points of intersections between the
hemicycles in the high-frequency regions and the Z′ axis are
almost in the same position. This means the intrinsic
resistances of capacitors (electrolyte resistance, contact
resistance, and electrode resistance) are basically steady.
The equivalent series resistances corresponding to the
diameters in the high-frequency regions were 23, 20, 15,
11, and 14 Ω, respectively. The result is consistent with (the
energy curve in) Fig. 4, in which the intrinsic resistances of
the capacitors decreased firstly and then increased with the
increasing contents of Sn doping. When the molecular
ration of Sn/V2O5 is 1:10, the intrinsic resistances of the
capacitors were the lowest.

Leakage current and the self-discharge

Figure 8a showed the relationship between the current and
time at a constant voltage. Seen from Fig. 8, current
decreased rapidly within several seconds in the initial stage
(when the voltage of capacitor reaches the constant
voltage). This indicates that the charges on the interface
of electrolyte/electrode reached saturation state. In this
stage, the current plays a dominant role to maintain
discharge current of impurity ions and leakage current of
the system. And then, the leakage current of the system
becomes dominant and gradually stabilized. The result
indicates that the simulation capacitor possessed excellent
characteristics of leakage current.

Figure 8b shows the relationships between voltage and
time. When the capacitor was charged to different operating
voltages, the voltage falls rapidly while being laid aside.

L1 R1 Q1

R2
C1 Q2

R3 R4

Fig. 6 The equivalent circuit
of the V2O5 xerogel with Sn
doping
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The possible reason is that partial voltage is consumed by
instant discharge of the equivalent series resistances.
Extending time, the drop of voltage becomes mild. A
stable voltage of 0.9 V is achieved after 4 h standing, which
indicates that self-discharge performance of the electrode is
good.

Cyclic voltammetry

Figure 9a showed the CV results with 1 mV s−1 scanning
rate. From Fig. 9a, a spreading redox peak could be
observed at about −1 V, and when scanning voltage exceeds
the range of −1.5–0.6 V, a hydrogen evolution peak and an
oxygen evolution peak could also be observed. Figure 9b
was the CV curve at different scanning rates. The CV
curves looked like spindles at the rate of 10 mV s−1. When
scanning rates were less than 5 mV s−1, the CV curves
exhibited good symmetrical, rectangular characteristics.
Inductive currents increased with increasing of scanning
rates, and there was a linear relation between the scanning
rates and the inductive currents. Namely,

I ¼ CdV=dt ¼ Ck; ð3Þ

where C means the specific capacitance, dV/dt is the
differential coefficient of the voltage to the time, and k

represents the scanning rate. With the increase of scanning
rates, the CV curve presented inclining tendency deviating
from the rectangular characteristic. The reason is that ions
in electrolyte transmitted to the surfaces of electrodes are
less than those of consumption due to the increasing
currents, which induced the ion quantities on the interface
to not meet the discharge requirements of the electrode.
Therefore, charges were stored on the electrode, which
results in the electron polarization.

The electrochemical potential window is another essen-
tial factor in supercapacitors since it directly affects specific
power and specific energy. CV curves of the vanadium
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oxide electrode with different voltages are shown in
Fig. 10; the scanning rate was 10 mV s−1, and MeEt3NBF4
(1 mol l−1) was used as electrolyte. It can be seen from the
figure that all CV curves were symmetrical and approxi-
mately rectangular. There were obvious redox peaks,
indicating favorable pseudo-capacitance characteristics.
There was a distinct hydrogen evolution when the voltage
was less than −1.8 V, so the widest electrochemical potential
window ranged from −1.8 to 1.0 V. The specific power and
specific energy of the electrochemical capacitor increased
with the increase of the electrochemical potential window.

Performance testing of capacity

Figure 11a shows the charge–discharge curves of the
capacitors at the current density of 200 mA g−1. The
specific charge–discharge capacity and coulomb efficiency
were 23.262 mA hg−1, 22.727 mA hg−1, and 97%,
respectively, which means that the electrode material had
relatively high reversibility. Figure 11b shows the discharge
curves at different current densities. It was a linear relationship
between discharge capacity and voltage. Therefore, the slope
of the discharge curve dV/dQ was basically steady, which
indicates that the vanadium oxide had electrochemical
stability. With the increasing current density, the capacity of
the capacitor decreased, and the declined tendency was
enlarged with the current density increase. The reason was
that, with large current density and short time, the protons
and ions were not able to filter into the bulk and stayed at the
surface of the electrode, which made the utilization ratio and
specific capacity of the active material reduce.

Conclusions

Sn4+-doped vanadium oxide xerogel was prepared with the
sol–gel process. Microstructure and surface morphology of
V2O5 were investigated using BET, XRD, and SEM

methods. The doped V2O5 was a typical mesopore material
with 2–4-nm pores. The results show that the modified
cathode material is a mixture of V4+ and V5+. Capacity
performance and power performance of the doped V2O5

were tested by galvanostatic charge/discharge, EIS, and CV
methods. Favorable symmetrical curves were obtained at
different scanning rates and voltage ranges. The achieved
maximum specific energy and specific power are
27.25 mA hg−1 and 494.87 Wkg−1, respectively.
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